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SELECTION OF A MULTIAXIAL FATIGUE LIFE PREDICTION
METHODOLOGY: A REVIEW OF EXISTING THEORIES

Abstract

The aim of this work is first, to provide a concise but thorough assessment of some com-
monly used high-cycle fatigue criteria and second, to check their predictive capabilifies against
synchronous sinusoidal out-of-phase bending and torsion experimental results (i.e. sinusoidal
stress signals of the same frequency but with a phase difference). This bending-torsion stress
system does not closely represent real load conditions undergone by a machine part. However,
it is complex enough to differentiate the various fatigue criteria and to permit a first classifica-
tion of the approaches examined, according to the accuracy of their predictions.

The presentation of the various fatigue theories is preceded by a careful examination of
the commonly used definitions of the stress quantities arising in the various fatigue limit crite-
ria. Somewhat surprisingly it is observed that the very basic problems of the evaluation of the
amplitude and mean value of the shear stress acting on a material plane, as well as, the calcula-
tion of the same quantities of the square root of the second invariant of the stress deviator, are
still not resolved satisfactorily for non-proportional loading conditions. In the present work
new definitions of these stress quantities are formulated. It is shown that these new definition
are free from any inconsistency. Furthermore, these consistent definitions are used in the appli-
cation of the various fatigue limit criteria in out-of-phase bending and torsion.

Poor agreement is observed between predictions and experimental results for all the crite-
ria examined here. It ensues from the present investigation that the elaboration of a new
rational hiéh-cycle fatigue theory for metals is of prime necessity in order to comply with the
ambitious objectives of the FADIN project. The basis of such a theory is presented in PART II

of the present report.
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INTRODUCTION

Experience acquired from single stress component high-cycle fatigue testing, has
shown that many metals possess a fatigue limit. Tension-compression and rotating
bending tests, are examples of single stress component loading. If the unique stress
component induced by such a load fluctuates with a constant amplitude inside the
stress bounds defined by the corresponding fatigue limit, then the specimen can sustain
a very high number (theoretically infinite) of load cycles, without the development of a
fatigue crack. To generalize the fatigue limit concept in multiaxial stress conditions the
point of view commonly adopted is that there exists a fatigue limit criterion in terms of
the periodically varying stress components. Thus the aspects of micro-damage or even
short-crack propagation are not considered. The problem is then stated as follows:
Given some simple fatigue information, such as experimentally established fatigue
limits for single stress components, construct fatigue limit criteria for multiaxial cyclic
states of stress. This generalisation of the fatigue limit concept in multiaxial stress con-
ditions invokes the idea of the separation of the whole stress space into two parts, the
unsafe and the safe one. The safe part of the stress space contains the origin and is
bounded by a closed surface. Therefore, the fatigue criterion can be expressed as an
inequality. Satisfaction of this inequality implies that the stress state induced by the
external cyclic load, remains within the safe part of the stress space. Employing this
concept various authors have proposed many fatigue criteria over decades of research.
- In spite of the high number of proposals, there is not yet a universally accepted
approach. For the older criteria this is due, at least partly, to the fact that these common
criteria are initially conceived for in-phase cyclic stress systems (i.e. proportional
cyclic loading). In principle, as we see later, these criteria can be extended to cover
out-of-phase load conditions. More recent proposals discuss specifically the problem
of out-of-phase cyclic loading. The main objective of the present work is to investigate
the appropriateness of several fatigue criteria.

Because of the high number of the fatigue theories examined, it is found useful to
give first a complete set of the stress quantities arising in the various criteria. Then, the
different criteria are classified into three categories namely, critical plane approaches,
approaches based on the stress invariants and approaches using averages of stress
quamiiies within an elementary material volume. Not all the existing criteria have been
included in this study, simply because such an enterprise would be too lengthy. An
rather complete list of existing fatigue criteria can be found for instance, in Papa-
dopoulos [1]. The choice of the theories presented here, is therefore somewhat arbi-
trary. In general, more attention has been attributed to recent proposals. Concerning
older theories, care has been taken to include those approaches, that the author feels to
be among the more widely used in high-cycle fatigue. The predictions of these criteria -
against out-of-phase bending and torsion experimental results, collected from the rele-
vant literature, are used as a decisive test, to draw some conclusions. However, not all
the examined criteria are controlled against the available test data. The reasons of
excluding of this evaluation process some of the criteria presented, are duly explained
where appropriate.
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DEFINITION OF SOME USEFUL STRESS QUANTITIES

Stress quantities related to a material plane

Normal Stress

Let us consider a material point of a body submitted to cyclic loading, (Figure I).
Let us consider further a material plane, denoted as A, passing through the point under
consideration. A plane is located by its unit normal vector ». This unit vector in turn is
described by its spherical angles (9,0), (Figure 1). On the plane A is acting the stress
vector, denoted as .Sn , given by:

=Z-n (1)
The stress vector S is decomposed into two vectors, one perpendicular to the plane A,
which is the normal stress vector NV and one tangential to A, which is the shear stress

vector C. The normal stress V, carried out by the unit vector n, is precisely the pro-
jection ofS onn, (Figure 1):

N=(n-Sﬂ)n:N=(n-E-n)n (2)

The shear stress vector C, is equal to the difference of these two vectors:

C=SH-N:: C=XZ-n—(n-Z-n)n (3)

' The above definition means that the shear stress vector C is the orthogonal projection
of the stress vector S onto the plan 4, (Figure ). )

Figure 1 .Stress vector S , normal stress vector N and shear stress vector C acting on
a material plane A
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During a complex cyclic loading the tip of the stress vector S describes a closed
space curve \V, (Figure 2). Clearly, the normal stress N conserves its direction invari-
ant. The tip of the vector N oscillates between two points on the line defined by n,
these two points being the extremes of the projection of the curve ¥ onto 7. Therefore,
during a cycle of a complex periodic load the vector NV acting on A changes in magni-
tude but not in direction. Because of this fact the definition of the amplitude and mean
value of the normal stress NV can be based on the study of its algebraic value (n - Z - n)
alone, which in turn is a scalar periodic function of time. Finding the amplitude and
mean value of a scalar periodic function is a trivial problem. Indeed, the semi-differ-
ence between the maximum and minimum values of the function provides its ampli-
tude, whereas the semi-sum yields its mean value. :

Figure 2 .Evolution of stress quantities acting on a material plane A, during a complex

cyclic loading

Therefore, the amplitude of the normal stress is defined to be equal to the semi-differ-
ence between the maximum and minimum values that (n-Z - n) achieves inside a
load period P, whereas the corresponding mean value is equal to their semi-sum

N, = %{Teaf(f " Z(1) - n) - iﬂel}'(f RAOE rg)}
N, = %{r;:eag({r@(f) -f_l)"';rg}l(fj-?(f)-f)}

Clearly, the maximum value of the normal stress is equal to:

Nmax = Na+Nm ®)
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Shear Stress

The situation is much more complex regarding the definition of the amplitude and
mean value of the shear stress. The complexities arise from the fact that, unlike the
normal stress vector N which conserves its direction, the shear stress vector C
changes in magnitude and direction inside each load cycle. Indeed, during a load cycle
the tip of the shear stress vector C describes on A a closed curve V', which in fact is
the projection on A of the space curve ¥ described by the tip of the stress vector Sn,
(Figure 2). In conclusion, C is a vectorial periodic function of time. Therefore, we
face the problem of finding the amplitude and mean value of a vectorial function and
this is not a trivial problem. However, let us assume that by some means we have suc-
ceeded in finding the amplitude C , Of the shear stress acting on a arbitrarily chosen
plane A. Of course, the curve \¥' described by C is different on different planes passing
through the point under consideration. Therefore, the shear stress amplitude C,
depends on the orientation of the plane on which it acts, that is it is a function of » or
equivalently a function of ¢ and 8, i.e. C 4(0,0). To find the maximum shear stress
amplitude a.max ON€ has to take into account all the planes passing through the point
under consideration. This can be done by searching the maximum of C 4(©,6) over the
angles @ and 0 :

& = max {Ca(cp,e)} (6)

a,max
0,6

 Let us denote by ( ©*,0) the pair of @ and O that provides the solution of the maxim- _
isation problem above. Clearly this couple (¢*,0") defines the critical plane. Let us
turn now our attention to the most critical problem left unsolved, that is the evaluation
of C , On a given material plane A.
Review of previous work

To the author’s best knowledge two proposals have been formulated in the past
for the general solution of the problem of finding C o and C, . The first one seems to
be first discussed by Crubisic and Simbiirger [2]. Although the fatigue criterion pro-
posed by these authors is not of the critical plane type, the evaluation of the amplitude
and mean value of the shear stress acting on a material plane A, is a necessary interme-
diate step in their approach. To define the shear stress amplitude they imagine all the
lines lying on A passing from the origin O and they project the curve ¥' on all these
lines. The shear stress amplitude is defined to be equal to half the length of the longest
among these projections of ‘¥". Therefore, this method will be called the Longest Pro-
Jection proposal to reflect the above definition of shear stress amplitude. Let us denote
as A'Z' this longest projection; then one has C, = A'Z'/2, (Figure 3). The mean
value of the shear stress is given by the segment OM’ where M’ is the midpoint of the
longest projection A'Z’ of ¥, i.e. C,, = OM’ see (Figure 3).
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line of Longest
 Projection of ¥

Figure 3 . The Longest Projection proposal

In what follows, it is presented a counter-example, that is an example of a particular
shear stress path for which the Longest Projection proposal falls short. To this end let
us assume that the tip of the shear stress vector C' describes on plane A a path
‘.4 — Z — A4, which indeed is a linear segment AZ. The segment AZ is located such that
the radius OM joining the origin with its midpoint is perpendicular to 4Z, (Figure 4).

line of Longest
Projection of ¥

|

AN
Figure 4 .Counter-example inducing in breakdown the Longest Projection proposal
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Intuitively, one concludes that the shear stress amplitude is equal to half the length of
AZ, ie. C, = AZ/2, whereas the mean shear stress is equal to the length of the seg-
ment OM joining the origin with the midpoint of 4Z, i.e. C,, = OM, (Figure 4). Let
us apply the Longest Projection proposal in this case. According to this, one seeks to
find the line passing from O, onto which the projection of 4Z becomes maximum.
Clearly, this line is parallel to 4Z, (Figure 4). The projection of AZ on this line,
denoted as 4'Z’, is obviously equal to AZ itself. The shear stress amplitude according
to the Longest Projection proposal is equal to C a = A'Z'/2. This in turn is equal to
the intuitively found value of C a = AZ/2, because of the equality 4Z = 4’7" .
However, the midpoint M’ of the projection 4’Z’ coincides with the origin O indicat-
ing that in this case. according to the Longest Projection proposal, the mean shear
stress is zero, i.e. C m = 0, (Figure 4). This result seems to be wrong and at least
against our intuition, which provided the (correct) value of C m = OM. The counter-
example studied here is just one example where the Longest Projection proposal
breaks down. One can find many other situations where this proposal leads to ambigu-
ous results.

The second proposal for solving the problem under consideration is based on the
concept of the longest chord of the curve W¥'. It will be called precisely the Longest
Chord proposal. This method has been discussed in some detail in Lemaitre and
Chaboche, [3]. According to this approach one must consider all the chords joining any
two points of the curve ¥' and find among them the chord of maximum length, (Figure
' J). The amplitude of the shear stress acting on A is equal to half the length of the long-

est chord, denote as 4Z, of the curve W', (Figure 5). Then one has C a 2AL/2. The
value of the mean shear stress according to the Longest Chord proposal is equal to the
' length of the segment that joints the origin O with the midpoint M of AZ, (Figure 3).

|

Figure 5 .The Longest Chord proposal
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If one applies this method to the Longest Projection counter-example of (Figure 4)
described before, the correct values C g =AZ/2 and C,, = OM will result.
Undoubtedly, the Longest Chord proposal constitutes a progress with respect to the
Longest Projection method. However, there are situations where this approach breaks
down as well. Again, the problems arise from the evaluation of the mean shear stress.
This is defined above to be equal to the length of the segment that joints the origin O to
the midpoint of the longest chord of ¥'. But one can easily conceive that the longest
chord of a curve is not necessarily unique. For instance, let us assume that the curve ¥'
described by C on a given plane A is an isosceles triangle ABC, (Figure 6).

ARl o TS L

Figure 6 .Counter-example for which the Longest Chord proposal falls short

Then we have two equal longest chords, i.e. 4B and AC. Although this does not affect
the value of C,, which is given by C, = AB/2 = AC/2, the mean shear stress is
not uniquely defined any more. If D et £ are the midpoints of 4B and 4C, (Figure 6),
which one of the segments OD or OF has to be used to calculate a mean shear stress
value C, ? This example is used as a counter-example illustrating a situation where the
Longest Chord proposal falls short. One can find many other loading conditions for
which uniqueness of the calculated shear stress values is not ensured. In conclusion,
the counter-examples, (Figure 4) and (Figure 6), even if not of immediate practical
interest, served to underline the need for a new definition of C o and C, , which must
be free from the inconsistencies encountered with the methods examined before.
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A proposal based on the concept of the minimum circumscribed circle

As it has seen, the tip of the vector C describes on A a possibly complicated
closed curve ¥'. To define unambiguously the shear stress amplitude, the author came
to the conclusion that this amplitude must be conceived as the maximum excursion of
the tip of the shear stress vector C from a mean shear stress state described by a fixed
vector Cm on A. Therefore, unlike the previous proposals that started by researching
first the amplitude and subsequently the mean shear stress, here we seek to determine
first the mean shear stress state. Let us assume that by some means such a mean shear
stress vector C has been located on A. Then the amplitude of the shear stress is equal
to the length of the segment that joints the tip of the vector C to the most distant
point on the curve ¥'. The main problem is then the procedure that permits to locate
C . Here, it is proposed to take as C‘ the vector that points to the centre of the mini-
mum circumscribed circle to the curve ¢ V. The shear stress amplitude on the plane A is
then obviously equal to the radius of this circle. The present approach is called pre-
cisely the Minimum Circumscribed Circle proposal. The idea of the minimum circum-
scribed circle has first been put forward by Dang Van in [4], but an improper
mathematical formulation of the problem was presented in that paper.

In the following the correct mathematical formulation of the problem of finding
the minimum circumscribed circle to a plane curve is established. The formulation pre-
sented here was first elaborated in [5]. To make things clear let us consider a plane A
defined by its unit normal vector n. On this plane we compute the shear stress C,
Equation (3), at a finite number of instants t;, i=1,2...m of the load period. Thus the set
C(t), i=1,2..m is formed. This means that the curve Y' described by C on A is
' .approxxmated by a polygon P of m vertices. By increasing the number m one can make
the polygon P to be as close to \¥" as he wishes. Therefore, in what follows the problem
of searching the minimum circumscribed circle to polygon P will be pursued. The m
vertices of P are indeed described by the set of vectors C(7)), i=1,2...m. There are infi-
nitely many circles that can be drawn on A to contain at their interior the polygon P.
The smallest one of these circles is what we have called the minimum circumscribed
circle to P. The minimum circumscribed circle to a plane polygon is unique, [6]. The
centre of this circle determines the mean shear stress C’ on the plane A. Mathemati-
cally the problem of finding C is formulated as follows:

Bica min{max u C(t)-w H} (7)
fi = =

~m W

where C(r ) is an element of the set of the m vertices of P and w a point of plane A.
The way that the min-max problem, Equation (7), has been built needs explanation,

(Figure 7).
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Figure 7 .Formulating the min-max problem for the research of the Minimum

Circumscribed Circle

To illustrate that, let us assume that one chooses arbitrarily a point w’ on A, as a candi-
date for being the centre of the minimum circumscribed circle to P, (Figure 7). Even
after a candidate centre has been chosen, the number of circles drawn with w’ as cen-
tre and containing the polygon P, is still infinite. However, among these infinitely
many circles there is a smallest one. Its radius is equal to the longest line segment,
among the m in number line segments joining w’ with the vertices of P, (Figure 7).
Therefore, for a given w’ the radius R’ of the smallest circle centred on w’ and cir-
cumscribing P is equal to: ' ¥

R = max || cty-w| (8)
it -

The relationship above, corresponds precisely to the maximizing part of the min-max
problem, Equation (7). The minimizing part of the min-max problem can be under-
stood as follows. After having found the smallest circumscribed circle centred on a
candidate centre w’, one can chose another candidate centre w’’ leading to a circle
always containing P, but now with a radius R” smaller than the previously found R’
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and so forth, (Figure 7). In other words one is seeking to minimize the quantity,

(max] ety |}

by varying w and this corresponds precisely to the minimizing part of the min-max
problem, Equation (7). However, the explanation of how the min-max problem has
been built does not provide any indication of how this problem can be solved. The
solution of the min-max problem, Equation (7), is instead based on the following theo-
rem first established in [5] in 2 more general context:

Theorem
The minimum circumscribed circle to a plane polygon P is: either one of the circles

drawn with diameter a line segment joining any two vertices of P, or one of the circum-
circles of all the triangles generated from every three vertices of P.

The interesting reader can consult reference [5] for the demonstration of this theorem.
The number of line segments defined by any two vertices of P is equal to the number
of the combinations of the m vertices of P taken two at a time,

m !
"D~ (2) = "= 5=y ()

whereas the number of all triangles that can be generated combining every three verti-
_ces of P is equal to the number of combinations of m taken three at a time:

nr=(}) TR (10)

= T 3(m-3)!

The algorithm for finding the minimum circumscribed circle to the polygon P is then
straightforward:

Algorithm

« First, the set of all the line segments formed by every two verti-
ces of P is assembled. It is noticed that this set is composed by all
the sides and all the chords of P. The number of the elements of
this set is equal to np, Equation (9). For each line segment, which
is indeed a chord or a side of P, a circle is drawn with diameter
the line segment under consideration.

« Second, the set of all the triangles generated from every three
vertices of P is built. The number of the triangles thus formed is
equal to np, Equation (10). For every triangle its circumcircle is
drawn.

10
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* Third, for each circle, among the np+ny circles drawn in the
two previous steps, a check is performed to find out if this circle
contains the whole polygon P. This is done by calculating the dis-
tances from the centre of this circle to all the vertices of P. If these
distances are all smaller or equal than the radius of the circle
under consideration, then the circle circumscribes the polygon P.
For such a circle, the co-ordinates of its centre and the length of
its radius are stored in a set denoted as R.
» Fourth, the elements of set R are all circles that contain the pol-
ygon P. In view of the theorem announced before, the circle with
the smallest radius among the elements of set R is the minimum
circumscribed circle to the polygon P.
Once the centre C'm of the minimum circumscribed circle to the curve V' (approxi-
mated by the polygon P) has been located, the mean value and the amplitude of the
shear stress acting on A are given by:

c)=¢, | )

C’" B ” gm H C"" - mfx
i

It is noticed that an attempt for solving the min-max problem, Equation (7), has been
done in [7]. However, the algorithm given there is an algorithm of incremental type the
convergence of which to the solution is not demonstrated. (Figure 8) illustrates the
application of the Minimum Circumscribed Circle proposal in the loading cases of the
_ counter-examples, (Figure 4) and (Figure 6), that induced the breakdown of the Long-
‘est Projection and Longest Chord proposals respectively.

Minimum Circumscribed Circle
to rectilinear shear stress path

Minimum Circumscribed Circle
to triangular shear stress path

B 0

Figure 8 .Application of the Minimum Circumscribed Circle proposal in the previous
examples

11
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From (Figure 8) it is clear that the proposed approach leads to the correct solution in
both cases. Furthermore, because of the uniqueness of the Minimum Circumscribed
Circle it does not exist any counter-example inducing in inconsistent results this
approach. It seems then that this proposal is a valuable method for computing the mean
value C, and amplitude C, of the shear stress acting on a material plane A. Of course,
to find C, max 2l the planes passing through the point under consideration must be
considered and the maximisation process described by Equation (6) has to be applied.
An interesting remark is that if the curve V' possesses a centre of symmetry then the
centre of its minimum circumscribed circle is its centre of symmetry. This property of
the centre of symmetry is fully exploited in the examples shown below.

Examples
Application in out-of-phase bending and torsion

Let us examine now how the above definitions are applied in synchronous sinu-
soidal out-of-phase bending and torsion. For the choice of the frame O.xyz shown in
(Figure 9) the stress state is described by the tensor:

[ 2w . (27t ; ]
Zxx ny 0 Z:cx,asm("ﬁ") L z.':x,m nylasm(-—;— i 5] T Exy,m 0
E = E = 12
- ny B G2 ny'asm(g-;-f-‘-a) + Z_rylm 0 0 (12)
0 0O
i 0 0 0 ]

Z

Figure 9 .0.xyz frame attached at any point of a specimen subjected to bending and
torsion and O.nlr frame attached at material plane A.

12
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- An elementary material plane A passing through O is defined by its normal vector 7.
The angle 6 made by » and the z axis, and the angle ¢ made by the projection of 7
onto the x-y plane and the x axis, will be called the spherical coordinates of , (Figure
9). With the help of these spherical coordinates (¢,0) the Cartesian coordinates of n in
O.xyz are given as:

n, = sinBcosq 0™ sin®sing n. = cos® (.13)

Introducing into Equation (2) the stress tensor from Equation (12), and the components
of the unit vector # from Equation (13), the normal stress V acting at any moment on
the plane A is obtained:

N(t) = [ n.‘asin(?/) + En_m]coschsinze
(14)

, < fAE e}
*[E’ty'asm(-P—— ) ‘ Exym]sm'f‘(psm 0

By inspection of the right hand side of Equation (14), one can understand that the mean
value NV, corresponds to the sum of the time independent terms:

N_ = sin 0(Z

m

cosch X Exy mSin2o) (15)

Xxx,m

Extracting N,, from N(t), developing the term sin(2nt/P -3§), appearing in Equa-
‘tion (14) and after some manipulations the amplitude » , is obtained:

N_ = sin GlcascpIJE COSZ¢+4Z§y’aSin2(p+22 sin(29)cosd (16)

a xx,a xya

xx,a

Clearly, N, and N, could also be obtained by direct application of their definitions,
Equation (4), by evaluating through standard calculus the extrema of N(¢).

. To discuss the quantities related to the shear stress C, it is useful to introduce
another frame O.nlr, where (I, r) are axes lying on A, defined as indicated in (F: igure 9).
The unit vectors along the | and r axes will be denoted as Z and r. Their coordinates in
the O.xyz frame are:

[, = —sing Iy = cosQ L. =10 )
r, = —cosOcosg 5 —cosOsing r, = sinb

Intrbducing Equations (12) and (13) into Equation (3) one obtains the shear stress C
expressed in the frame O.xyz. However, it is more judicious to evaluate C in the frame
O.nlr where only the components along | and r exist. These components are given as:

13
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r

Ci=1-C and -C =y:€ (18)

Introducing Equation (3) in these relationships leads to:

C‘.=1—Z-r_1 C R (19)

r

= 0), is taken

where the fact that » is orthogonal to both / and » (i.e. n-/ = n-r
) and (17) one obtains:

[
into account. Combining Equation (19) with Equations (12), (i3

= 2 ; .
Ci(ey= [Txxasm( ;r) + Zn_.m:rsmﬁ sin2¢@

[ - asm o\ rvm}sinﬁcosZcp
C () = —_l)[ sm( nq w-._.u‘sziMB COSZ(P

_%[ Sm(-—-—-— ] Zey.m ]sinZBsinE(p

- Developing the term sin(2nt/P-3) in the above relations and rearranging terms
through elementary but lengthy algebraic manipulations, lead to the formulae:

C,(n = fsz'n(z?n r) +gco.s(2?“rr )

X
xx,m . .
+(— 3 sin2@ + Exy.m cos2(p) sin®
(21)

C()=p sin(%’—f r) + qca:r(z?TE )

Z z
+(—- x;‘mcasch— ;""sm2tp)sm29

where f g, p and g are auxiliary functions:

z
f= sine( ?'asin2¢+zxyacos2qacosa) g = -ny 25inBcos2@sind
¥ 7 (22)

coszq>+2xy’asin2qacas:5) qg = %Exy’asinzesian)sinﬁ

xx,a

» =-.-%smze(z

Equations (21) are the parametric equations of the curve ‘¥'. They describe an ellipse in

14




REVIEW OF FATIGUE LIMIT CRITERIA

the frame O.Ir. Therefore, in out-of-phase bending and torsion, the path ¥ described

by the vector C on A is an elliptic path, (Figure 10).

By inspecting Equations (21) it is easy to understand that this elliptic path ¥ is
centred at the point C 1. m» Cr, m) corresponding to the time independent terms of the
right hand sides of these relationships, i.e.:

z
Gy = (— J':;"m.s'in.’clcp+):Ixj’,mw.s'Z(p) sin®

.m
(23)
z R
- xx,m 2 xy,m . ;
Cr.m—(— 505 = sm2cp)sm28
The semi-axes of this ellipse ‘¥ are given by:
/7+2+2+2 j:+2+2,_72 5
ab= ISP 0 (28 2P 20 gy gp)’ (24)

The sign (+) corresponds to the major semi-axis denoted as a, and the sign (-) to the
minor semi-axis denoted as 5. Obviously a and b are functions of (¢, 8).

"\

h C l

Figure 10 .Elliptic path ‘¥ described on a plane A by the shear stress vector C during
a synchronous sinusoidal out-of-phase bending and torsion loading.

15
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Clearly, the minimum circumscribed circle to the ellipse ¥ is centred at the point
CrmC » m) Which is its centre of symmetry. The radius of this circle is equal to the
major semi-axis a. Hence, the amplitude of the shear stress C o> and the mean value
C,, are given as:

2 2 2 2 2 2 2 2
+g +p + +o°+p° + 2
Ca=Jf e "+J(f S0 (25)
P oL I (26)

The above formulae will facilitate the application in bending and torsion of any fatigue
criterion of the critical plane type.
Quantities related to the stress invariants
Hydrostatic Stress
The stress tensor can be split in its deviatoric and spherical parts as:

e 54-%:r(z)1 (27)

where / is the second order unit tensor, ¢7(Z) is the first invariant of the stress tensor
equal to (L) = (T, +Z, +Z_) and S is the stress deviator:

E5 R 5
- 3yy - zch Ly
S=X- lrr(E)I=> S= D 2):yy" T2, 5 (28)
e e B % 3 yz
b 22‘:: B Exx = Eyy
I zx zy 3 ]

- The hydrostatic stress denoted as £ 4> 18 a stress quantity frequently arising in the
formulation of fatigue criteria:

EH > % h‘(?) = ZH(O i % [zxx(") i E}’y(r) ¥ z:zz(“)] (29)

For a cyclic loading, Z (/) is a scalar periodic function of time with period P. One can
easily define the hydrostatic stress amplitude T, , and mean value = Hom

ZH = - max—= — min ‘3

30
Sl 4 - S teP (30)

1{ tr(Z(1)) ‘ tr(E(r))}
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5 el tr(Z(1)) . tr(Z(1)) o
W~ ST min—g (31)
Clearly, the maximum value of the hydrostatic stress Z H. max 1S €qual to:
EH, max ZH, a ¥ ZH, m (32)

Second Invariant of Stress Deviator
The square root of the second invariant of the stress deviator, denoted as /J,. is
also a quantity of interest. It is defined as:

J, = [5S5-S (33)

The definition of its amplitude and mean value is a quite complicated exercise. To
facilitate our task the following transformation rules will be introduced:

_ B3 1 -
S| = 58, $,=5(5,-5) S=S, 5=S S5 = S, (34)

With the above rules the stress deviator tensor is mapped onto the vector S of a 5-
. dimensional Euclidian space £ . The following equality holds: )

N N/(.S’2 + .S'2 + 82 D '(35)

Therefore, the length of the vector S, Equation (34), in £, is equal to the square root
of the second invariant of the stress deviator. Thus, a vector S obtained through the
transformation, Equation (34), fully represents the deviatoric stress state. During a
pe_rio&ic loading the tip of the vector S describes in £ a closed curve @'. The usual
definition of the amplitude of ff; , denoted as ,fj-_;;, is that it is equal to half the
longest chord of @' (Lemaitre and Chaboche [3], Fuchs and Stephens [8]). Clearly, this
definition is obtained by analogy with the previously examined Longest Chord pro-
posal for the definition of C,. As in that case, the definition of J.};—a through the
longest chord of @’, leads to ambiguous results because of the non-uniqueness of the
longest chord, which in turn implies the non-uniqueness of the mean value m
The following new definition is exempted from errors. To define J, o one has first
to construct the (unique) minimum S-dimensional hypersphere circumscribed to the
curve @', The length of the vector .S' that points to the centre of this hypersphere is
equal to the mean value «/‘E whereas J.E is equal to the radius of this hyper-
sphere. The centre .§m can be find by solving the following min-max problem:
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St {*:':; llé‘m—?’ﬂ} s

The geometrical explanation of the above problem is similar to that provided previ-
ously, when dealing with the shear stress C, with the difference that here our stress
path is not described in a 2-dimensional plane, but in a 5-dimensional space. The com-
plete algorithm for constructing the minimum circumscribed hypersphere in a curve
embedded in a n-dimensional Euclidian space is based on a theorem established by
Papadopoulos [5] and it is merely an extension of the theorem provided before for a 2-
dimensional Euclidian space (i.e. material plane A onto which the shear stress vector
describes a closed curve ‘P’). The complete discussion concerning a curve of a n-
dimensional Euclidian space is beyond the scope of the present work. However, the
stress state with which we usually have to deal in fatigue is a plane stress state because
the fatigue cracks frequently appear in the free surface of a specimen or a component.
Then the stress state is given as:

Zo: Zy 0
= i
REIRL T 0 (37)
0 00
The stress deviator is:
% -2 i
xx_ “yy
5 °
2 -2
S = yy “xx 38
il = ==y (38)
0 0 ’_Zxx i Eyy
L 30
Applying the transformation rules Equation (34) one obtains:
2 _-Z z
-~ XX vy =Y -
§ = ——= 8y = o S, - Z, (39)

2.3

the remaining two components of the 5-dimensional vector, Equation (34), being equal
to zero. Therefore, in this common case one deals with a curve @’ described by the tip
of the vector of Equation (39) in a 3-dimensional Euclidian space. For this case the
minimum circumscribed sphere to a polytope P of m vertices, that approximates the
curve @’, is provided by the following theorem.
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Theorem

The minimum circumscribed sphere to a polytope P of E; is: or one of the spheres
drawn with diameter a line segment joining any two vertices of P, or one of the spheres
a great circle of which is a circumcircle to a triangle generated from every three verti-
ces of P or one of the circumspheres of all the tetrahedra generated from every four

vertices of P.

The corresponding algorithm is similar to the one concerning the shear stress ampli-
tude with the difference that here the combinations of the m vertices of P that should be
taken into account are: the combinations of m taken two at a time (i.e. segments), the
combinations of m taken three at a time (i.e. triangles) and the combinations of m taken
four at a time (i.e. tetrahedra). Fortunately, if the curve @' possesses a centre of sym-
metry, the solution of the min-max problem, Equation (36), is readily available, as the
centre of symmetry is also the centre of the minimum circumscribed hypersphere to @'
Once {)’m has been found, J.E is obtained by the relationship:

%0 = BEPGI-3 ) (40)

Examples
- Application in out-of-phase bending and torsion

Let us see now how these apparently difficult definitions are translated in the case
of out-of-phase bending and torsion, Equation (12). The non-vanishing components of
; Ithe stress deviator, Equation (28), are:

z
— > _ xx = = =
S.. = 3" B See = —5 Sey =Sy =Z,, (41)

Applying the transformation rules, Equation (34), one finds:

Sl = Exx s S! = Exx,rsin(z_m) + zxx,m

- P
J3 V] J3 (42)
. (2nt
S3 2= Exy = S3 = nyﬂSlH(—P—— 8) + Exy,m

the other three components of the vector S being equal to zero. Therefore, the stress
deviator with four non-vanishing components, Equation (41), is fully described by
only two components S, and S in the transformed space. Accordingly, in this case
the £ space reduces to a familiar bidimensional plane and the much sought-after min-
imum circumscribed hypersphere to @', degrades to a circle. The components S ; and
S5 are the parametric equations of the curve @', which turns out to be an ellipse. By
inspection of Equation (42) one easily concludes that the centre of this ellipse (and of
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its minimum circumscribed circle), is the point:
S, =% /3 S; =2 (43)
Therefore, the mean value ,/J,  is given as:

22

'JJZ, m- «JS%, mt Sg, m= 'JJZ, m x;'m ® Eiy,m (44)

The amplitude of the square root of J, is equal to the major semi-axis of this ellipse:

2 2 2
il E.tx,a 2 z.t:x..':.' ey | 4_2 2 D
AJJE. LA E ( 3 = E.:cy.;::] e ,\/( 3 = E.ry.a] i iz.rx.azxy,a(smo) (45)

Finding the amplitude and mean value of the hydrostatic stress is a trivial problem as in
bending and torsion £, = Z__ /3. One has:

5 =1 E:mc,czt 5 __ Exx,m d 5 _ “xx.a * Exx,m 46
Ha —3 . A TR e an H,max ~— 3 (46)
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USUAL FATIGUE CRITERIA

In discussing the various criteria presented in this section, two firmly established exper-
imental facts will be taken into consideration. They are:

-The independence of the fatigue limit in cyclic torsion with respect to a superim-
posed mean (static) torsion, as far as yielding of the specimen is not reached, (Figure
11). This is usually the case in high-cycle fatigue. :

shear stress amplitude

A

T s
y Ty mean shear stress

Figure 11 . Uniqueness of the fatigue limit in torsion

The amplitude of the shear stress, that can be sustained by a specimen submitted to tor-
sion for a very high (theoretically infinite) number of cycles, is unique. This unique-
ness of the fatigue limit in torsion is a well-established experimental fact, clearly
demonstrated by the compilation presented by Sines, [9]. However, it is reminded that
+ this result does not hold for finite life torsion tests. There, the presence of a mean tor-
sion usually reduces the shear stress amplitude that can be sustained for a precise
number of load cycles, (Figure 11).

- The fatigue limit in bending strongly depends on a superimposed mean (static)
normal stress. A tensile mean normal stress reduces the fatigue limit, whereas a com-
pressive mean stress leads to a net increase, (Figure 12).

normal stress amplitude

by

b
bl
s
#

s

s

r

—
-Cy tOy  mean normal stress

Figure 12 . Influence of a mean normal stress on the fatigue limit in tension-
compression (or bending)
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This dependence can be accurately described by a linear relationship as the compila-
tions of many experimental results presented in Lemaitre and Chaboche [3] and Sines
[9] have shown. Of course the above experimental finding holds in the elastic regime,

(Figure 12).

Critical plane approaches

The ingredients of the critical plane criteria are the normal and shear stresses act-
ing on a material plane A. The various proposed formulae are different, but the process
to follow is merely the same. One must firstly, found the critical plane and secondly,
check if the criterion is satisfied on this plane. If the criterion is not satisfied, then a
fatigue crack may appear on the critical plane. Therefore, the orientation of the initi-
ated crack coincides with the orientation of the critical plane.

The Findley criterion

The Findley criterion [10] corresponds to the limitation of the linear combination
of Cg and Npq, acting on the critical plane. This plane is defined by the spherical
coordinates (¢*,0*), of the unit vector »* normal to the critical plane. Following
Findley the couple (¢*,0*) is determined by:

max

(9*,6%): max{C (¢,0) + kN, (0.0)} (47)
(9,0)

Once the couple (¢*,0*) has been found, the criterion to be satisfied is written as:

C,(*,6%) + kN, __(0*,0%) <A (48)

where x and A are material parameters. Application of the above procedure in cyclic
torsion with a mean shear stress (i.e. L., =Z,, o5in(2nt/P)+ Z,,m )» conducts to:

_ J 2 2 2
0= YA -x s By ) (49)

This means that the Findley criterion incorrectly predicts a dependence of the torsion
fatigue limit with respect to a superimposed mean torsion. This criterion has been
widely discussed in the past. This is the main reason to have presented it here. How-
ever, in view of the incorrect inequality, Equation (49), the Findley criterion will not
be further considered in the present work.
_The Matake criterion

The criterion of Matake [11] appears also as the limitation of the linear combina-
tion of C, and N, acting on the critical plane. However, the critical plane accord-
ing to Matake is the plane on which the shear stress amplitude reaches its maximum:

(*.,6%): max{C_ (9,0)} (50)
(9,8)
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after which the criterion is written as the Findley criterion:

C,(0*,0%)+xN, . (9*,0%) <A (51)

where k and A are material parameters. The same letters were assigned to the parame-
ters of the Findley criterion. However, it must be understood that x and A take different
values for each criterion. This remark holds also for the other examined criteria. The
parameters k and A of the Matake criterion are obtained applying Equation (51), in
fully reversed torsion (ie. C,(¢*0*)=t_, , N, ,.(0%6*)=0), and fully reversed
bending (i.e. C,(0*6*)=f,/2, N, (0%6*)= /_17/2). One obtains:

% =2 )= 1 A=t (52)

where /_| and f_, are the fatigue limits in fully reversed torsion and bending respec-
tively. This criterion correctly predicts the uniqueness of the torsion fatigue limit.
Moreover, it implies a linear dependence of the bending limit upon a superimposed
static normal stress. The present criterion is the most classical among the critical plane
approaches. Although presented here under the label ‘Matake criterion’ it has been
studied by many other authors. The related references can be found in Papadopoulos
[1]. This criterion is applied in the collected out-of-phase bending and torsion test data.

" The determination of the critical plane, Equation (50), is performed numerically, after

what Equation (51) is applied with the values of C, and N, =N_+N,  given by
Equations (25) and (15)-(16) respectively.

' The Robert criterion

This author [12] proposes to separate the effects of the static part NV, and the
fluctuating part N(#)—N,, of the normal stress ¥, acting on the critical plane. Further-
more, the concept of the shear stress amplitude C, is abandoned in the profit of the
quantity g (1 - g ml which directly resorts to the minimum circumscribed circle to
the curve ¥’ described by C on a plane A. The procedures of finding the critical plane
and controlling if the criterion is satisfied, are both compacted in the following rela-

tionship:

,:gf {“g(cp,e,r) =G, (00| +x[N@8,0-N,(00)] uN,,,(qa,e)} <A (53)

where x, A and p. are material parameters which in principle can be obtained from three
tests such as torsion ¢_,, fully reversed bending /| and repeated (i.e. zero to tension)
bending fj . Although this criterion appears appealing, it suffers from the same incon-
sistency as the Findley proposal, that is it (incorrectly) predicts a detrimental influence
of a static shear stress on the torsion fatigue limit. Indeed, application of the above pro-
cedure in cyclic torsion with a mean  shear stress (i.e.

Exy = Exy’ 25in(2nt/ P)+ Exy g ), conducts to:
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2 2
Jz.ty,a + (szy’a + p'z_rym) S’ k’ (54)

Furthermore, application of this criterion needs numerical calculations even for pro-
portional loading. To the author’s opinion, a fatigue criterion useful in engineering
practice must provide analytical solutions when applied in simple loading conditions,
such as in-phase cyclic loading. Therefore, this approach will not be further discussed
here.
The McDiarmid Criterion

The critical plane according to McDiarmid [13],[14] is the plane on which the
shear stress amplitude reaches its maximum value, i.e.:

(9*,6%): max {C (9,0)} (59)
(0.0)

McDiarmid employs the concept of case A and case B cracks, first introduced in metal
fatigue by Brown and Miller [15]. Case A cracks propagate along the surface of the
specimen, whereas case B cracks propagate inwards from the surface. Case B is more
severe than case A. The McDiarmid criterion is written as:

‘4,B
Ca((p*le*) + FNmax((p*?e*) < IA’ B (56)
5 1

"where o ¢ is the ultimate tensile strength of the material and the shear stress limit ¢ 4 Of

tg is used depending on whether the critical plane indicates that case A or case B
cracks can potentially occur, respectively. In torsion, case A cracks appear and then
t4=t_; . Case A cracks occur also under combined bending and torsion. This means
that the unit vector n* normal to the critical plane, belongs to the plane tangent to the
surface of the Specifnen, which implies that 6*=+n/2 | (Figure 9). Therefore, for
bending and torsion the criterion becomes:

r_
c (0% 3) + Z?If N0t £5) <1, (57)

This criterion correctly reproduces the uniqueness of the fatigue limit in torsion. Fur-
thermore, it implies a linear dependence of the bending limit upon a superimposed
static normal stress. Equation (57), is applied in the available out-of-phase bending and
torsion test data, with the help of Equations (15), (16) and (25). The critical plane is
determined numerically.

The Dietmann criterio

Dietmann [16] uses the concept of octahedral shear and normal stresses, in the formu-
lation of his criterion. The latest version of this criterion presented in Héfele and Diet-
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mann [17] will be discussed here. The octahedral stresses are the stresses acting on the
plane which is equally inclined to the principal directions of the stress tensor (i.e. octa-
hedral plane). For a proportional loading the frame O.123, defined by the principal
stress directions, is fixed. Therefore, in this case the octahedral plane does not move
with respect to the specimen. However, under out-of-phase loading the principal stress
directions (and therefore the octahedral plane) move with respect to the material. For
out-of-phase bending and torsion the z axis perpendicular to the free surface of the
specimen always coincides with the principal axis 3. Then the principal frame O.123
rotates around the z axis. Therefore, the unit vector » normal to the octahedral plane
makes a constant angle with the z axis equal to 8 =arcos(1/./3). The position of
0.123 at any moment of the cyclic loading is fully described by the angle y that makes
the (moving) axis | with the x axis attached to the specimen. The projection of n on
the 1-2 plane makes with the axis 1 a constant angle of n/4 and therefore an angle of
(n/4) +y with the x axis. In conclusion, the spherical coordinates @ and 6 of the unit
vector normal to the octahedral plane are given by:

= (n/4)+y 0 = arcos(1/./3) (58)

In the Dietmann approach the amplitude of the octahedral shear stress, denoted as
Coct, a, is firstly evaluated. For out-of-phase bending and torsion Coyer o can be
obtained by Equation (25), where the auxiliary functions f, g, p and q, Equation (22),
" must be evaluated beforehand for the values of ¢ and 8 given by Equation (58). There-
fore, Coctr, o is a function of the angle y. An allowable octahedral stress amplitude,
denoted as Cy¢y, 41, is also introduced by Dietmann. The procedure of building this
+ allowable stress is too lengthy. Therefore, only the final formula will be given here:

f-l 2N oct, m
Covtratr-= 3_-6 m (l —sm2y) + cos 27 (59)

where Ny, n is the mean value of the normal stress acting on the octahedral plane.
For out-of-phase bending and torsion Ny, » can be obtained from Equation (15)
upon introducing the ¢ and © values given by Equation (58). Clearly, Cy¢r, 41, 1S @
function of y. The critical octahedral plane according to the this approach is defined by
the angle y* which renders minimum the ratio Cyey, 412/ Coct, a» after what the crite-
rion to be satisfied can be written as:

Coct, a('f‘) < Coe, ALL(‘Y‘) (60)

The Dietmann approach is applied in the collected out-of-phase bending and torsion
fatigue limit data.
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Approaches based on the stress invariants

The ingredients of these fatigue criteria are the hydrostatic stress and the second
invariant of the stress deviator. In principle, application of anyone of these criteria can
establish if a fatigue crack may appear or not, under a cyclic load. However, the orien-
tation of the potential fatigue crack is by no means specified by these criteria.

The Marin criterion

Marin [18] proposed a criterion based on the amplitude and mean value of Jj-z .

The general form of his criterion is:

[JEJZ[KEJMSI &1

f*[ 9y

but in practice Marin suggests to use the valuesof x = | and A = p = 2. Applying
the criterion with these values in cyclic torsion with a superimposed mean shear stress
(e E_ry = ny‘asz‘n(Zm/P) TZym ) leads to the following inequality:

[ﬁzt}'an [Zt\szz <1 62
xy, | Zxv
T . = (62)

Therefore, the Marin criterion incorrectly predicts that the fatigue limit in torsion
depends on a static shear stress. Furthermore, application of this criterion in cyclic
bending with a mean normal stress (ie. £ = I  sin(2nt/P)+Z ) leads to the

Exxa . Exxm ?
{7_1_} +(7§—c-;J <1 (63)

Clearly, the Marin criterion is not able to distinguish the effect of a tensile static stress
from that of a compressive static stress, because the static stress Z xm 18 squared in
Equation (63). In spite of these obviously erroneous results, the Marin approach or
some equivalent form of his criterion, is still suggested as a valid multiaxial high-cycle
fatigue approach in modern books on fatigue[w]. This is the main reason to have dis-
cussed it here. However, we will not apply this criterion in the collected test data.
The Sines criterion

The criterion proposed by Sines [9] in the late fifties, is perhaps the most popular
high-cycle fatigue criterion (Fuchs and Stephens (8]). This criterion is written as:

/Jz, atXZy nSA (64)

: ‘formula:
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The parameters x and A can be obtained from two elementary tests, that is a torsion test
where one has (ie. [, =t ;,Z u ,—0) and a repeated bending test (i.e.
[T, o/ 3+ Ty m=fo/3 )- One finds:

k= (3t_/f)-3 A=t (65)

This criterion correctly reproduces the uniqueness of the torsion fatigue limit. Further-
more, it introduces a linear dependence of the bending limit upon a superimposed
static normal stress. Application of this criterion in fully reversed bending leads to the
equality ¢_,/f_, = 1/ /3 . Therefore, according to Sines the fatigue limits in torsion
and fully reversed bending are in a constant ratio for all metals. This is in disagreement
with experimental results which indicate that the ratio ¢_,/f , varies from 0.5 for
mild metals to 1 for brittle metals. Moreover, the limit £, is seldom available. Actu-
ally, the limit in fully reversed bending f_, is more frequently available. Hence, to
apply the Sines criterion, one usually resorts to the Goodmann line, from which the
limit £ can be obtained as f, = f_,/(1 +f_1/o'f) . With this assumption the crite-
rion becomes:

Sy
s * : B Ay (66)

This form of the Sines criterion, combined with the values of Jz, 4> Equation (45)
and Zp o, Equation (46), is applied in the available out-of-phase bending and torsion
éxperimental results.
The Crossland criterion
The criterion formulated by Crossland [20] differs from the Sines criterion only
concerning the influence of the hydrostatic stress, which according to Crossland must
appear in the fatigue formula by its maximum value:

[ o Wl ax SH (67)

The parameters x and A can be easily related to the fatigue limits /_, and /_, . Indeed,
for fully reversed torsion one has ,f-f?,;f .y » Zy max=0 whereas for fully
reversed bending /7, .=/, /3 and Ty ,...=f /3 .Application of the crite-
rion, Equation (67), in these two cases provides the material parameters:

k=@ /)-8 A=1 (68)

The uniqueness of the torsion fatigue limit is correctly reproduced by this criterion,
which also implies a linear relationship of the bending limit with respect to a superim-
posed static normal stress. The criterion, Equation (67), combined with the values of
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/Jz, «» Equation (45) and X H. max» EQuation (46), is applied in the available out-of-
phase bending and torsion fatigue limit data.
The Kakuno-Kawada criterion
Kakuno and Kawada [21] suggest to separate the effects of the amplitude and
mean value of the hydrostatic stress:

/J2’0+KEH_G+XEH'MS;,L (69)

The identification of the parameters of the criterion needs the knowledge of three
uniaxial fatigue limits e.g. ¢_;,f | and f :

k= (3t_/f)=-3 A= (3t /fy) -3 wo= (70)

This criterion has been further elaborated, especially for out-of-phase loading, by
Chaudonneret [22]. However, this author uses the ambiguous definition of E
based on the longest chord of the curve @’. As it was noticed already, the limit f; is
seldom available. Therefore, this criterion is not applied systematically to all the col-
lected out-of-phase bending and torsion experimental results. The performance of this
approach is partly evaluated from the performance of the Crossland criterion in fully
reversed tests, where these two criteria coincide. '
The Deperrois criterion

Deperrois [23] proposed a criterion that is based on the representation of the load-
ing path @', in the transformed deviatoric space Es. According to the methodology of

“:this author one must firstly, find the maximum chord of @ in Es, denoted as Ds. Then

one must consider the sub-space orthogonal to the direction of D5 and project the curve
@' onto this sub-space E4. The longest chord, denoted as Dy, of the projection of @'
onto E4 has to be found next. Then the sub-space E; orthogonal to the directions of D5
and Dy, has to be considered and the projection of @’ onto E; must be constructed,
after what the maximum chord D5 has to be found. The procedure must be repeated
until we reach the sub-space E,. The criterion of Deperrois is then written as:

| 2w =F g g
§J(D[+D2+D3+D4+D5) +KIY4 max S A (71)

In many cases, as for example in bending and torsion, the transformed deviatoric space
reduces to a bidimensional plane. The application of Deperrois criterion is then simpli-
fied. One has firstly, to found the maximum chord of the plane curve @' (i.e. D,) and
secondly, to project @' onto the line perpendicular to D,. This projection is a line seg-
ment the length of which is equal to D,. This criterion appears appealing because it
attempts to provide a detailed characterisation of the loading path in the deviatoric
space. However, it contains a serious error of logic. Indeed, it has been shown in a pre-
vious section that the maximum chord of the loading path @' in E5 is not unique. In the
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case where, for instance, two Ds exist, then there are also two E4 sub-spaces and the
Deperrois method falls short. Obviously, this situation may also appear in the case
where @' is a plane curve. More than one maximum chord D, can exist. Let us denote
as Dg D ; i=1,2... these maximum chords. Then a multitude of lines exist, each one per-
pendicular to a different maximum chord Dg ), and consequently a multitude of pro-
jections of @' on all these lines exist, inducing the breakdown of Deperrois’s approach.
In the loading cases where, the maximum chord of @' in E; is unique, and additionally
the maximum chords of all the projections of @' on the subsequent sub-spaces E4 to E,
are unique, the Deperrois criterion provides satisfactory results [24]. Nevertheless,
because of the basic error of logic contained in the Deperrois’s methodology, this crite-
rion will not be further considered here.
Criteria based on stress averages within the elementary volume

The ingredients of these criteria are average quantities within V, of the shear and
normal stresses acting on a material plane A. In general, these average quantities are
described through a double integral extending over 6 and @, where 8 and ¢ are the
spherical coordinates of the unit vector » normal to a plane A. The integral over 6
extends from 0 to =, and the integral over @ extends from 0 to 2. In this way, all the
possible orientations of the plane A inside V, are taken into consideration.
Grubisic and Simbiirger proposal

These authors [2], propose to classify the metals into three categories according to

. the value of the 7_;/f_, ratio. Only the proposal concerning the broader category of

hard metals (i.e. 0.57 <¢_;/f ; <0.9 ) will be discussed here. The rather complicated
method of Grubisic and Simbiirger can be condensed in the following formula:

2 .
/ <
\/471: . O ) Ansm9d9d(p <1 (72)

The term 4, is called by these authors “effective straining” of a material plane A. To
define 4, the following “equivalent” amplitude and mean value are introduced on A:

$,(9,8) = KC,(9,8) +AN,(0,6)
(73)
S n(®8) = KC,y(9,8) + AN, (0, )

An allowable stress amplitude is defined with the help of the Haigh diagram, which for
proportional loading can be written as:

(fo~f0)
o, (®0) = ofo S(@:8) + 1, (74)

Finally, 4, is defined by the ratio:
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A, = S,(9,6)/c,.(0,0) (75)

The parameters k and A are related to 7_; and f_, through two cumbersome formulae
reported in Grubisic and Simbiirger [2]. The most spurious assumption of their work is
the use of the same material parameters k and A to built the “equivalent” quantities S
and S, , Equation (73). Mainly because of this unfounded assumption, application of
the Grubisic and Simbiirger criterion in cyclic torsion with a mean shear stress leads to:

22xy.a_(2 2

G 7L

i 7 (76)

| 51

This relationship implies that the effect of a static shear on the torsion fatigue limit is
merely as strong as the effect of a static normal stress on the limit in bending. This
approach is not applied to the collected bending and torsion test data.

.Liu and Zenner criterion

This criterion [25] can be written as:

15 2n T ~ a .
Jﬁ I fe (EKC;(I - p,Ci) +AN (1 + VN, )]sin® db do &£ (77)
=0 6=

where x, A, 1 and v are material parameters related to four uniaxial fatigue limits
through some rather complicated formulae reported in Liu and Zenner [25]. The old

' definitions of C, and C,, based on the longest chord of the curve ¥, described by C

on a plane A, are used by these authors. Moreover, the number of four material param-
eters introduced, is an obvious disadvantage of this criterion. Finally, this approach
implies that the torsion fatigue limit depends on a superimposed static shear stress,
which is in clear disagreement with experimental results, as it is pointed out previously
in this work. Therefore, this approach is not applied to the collected bending and tor-
sion test data.
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APPLICATIONS AND DISCUSSION

Twelve usual multiaxial high-cycle fatigue criteria have been carefully though
briefly examined in this work. Only five criteria, namely the criteria of Crossland,
Sines, Matake, McDiarmid and Dietmann, have been selected for application against
the out-of-phase bending and torsion experimental results found in the relevant litera-
ture. The reasons of excluding from the applications, some of the criteria examined,
are explained in the sections where the various criteria have been presented. The col-
lected out-of-phase bending and torsion experimental results are reported in Table .
They come from various sources. Here, they are retrieved from the following publica-
tions: Zenner et al. [26], McDiarmid [27] and Froustey and Lasserre [28]. Experimen-
tal results for four different materials are presented in Table . The first four columns of
this table contain, for each test, the amplitude and mean value of the normal stress due
to bending and of the shear stress due to torsion, respectively. In the fifth column the
phase difference between these two stresses is reported. The stress values presented
correspond to the limiting state of non-fracture of the specimen for a number of load
cycles of the order of one million. The next five columns of Table (i.e. columns 6 to
10) are dedicated to the five fatigue criteria maintained for application against the
available test data, which are the criteria of Crossland, Sines, Matake, McDiarmid and
Dietmann. The order of presentation follows the chronological order of publication of
these works. The values appearing in these columns are the values that achieves the
error index, denoted as I, which measures the deviation of the prediction of the crite-
rion with respect to the experimentally observed values. The definition of I is the fol-
lowing. All the five criteria have been presented in the form of an inequality in the
previous sections. If for a particular experiment, after substitution of the experimental
"+ values in the corresponding formula, the left and right hand sides of the inequality
expressing the criterion are equal, then the prediction exactly agrees with the test
result. If the left and right hand sides differ, then the prediction deviates from the
experimental value. Therefore, the error index I, is defined to measure the relative dif-
ference between the left and right hand sides of the inequality expressing each crite-
rion, that is:

_ left hand side —right hand side (%) (78)

£ right hand side

[t can be seen from columns 6 to 10 of Table that, this error index achieves for all the

criteria values as high as +30% for some experiments.
It is interesting to examine the algebraic value of the error index I, because in this way
the dispersion of the predictions of each criterion can be observed. To this end (Figure

13) has been drawn.
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Table 1. Out-of-phase bending and torsion fatigue limit data

Zxa | Zoxm | Ixya | Zxym | @ Error [ndex [ (%)
(MPa) | (MPa) | (MPa) | (MPa) | (0) | Crossiand | Sines | Matake | McDiarmid | Dietmann
Material: Hard Steel f.; = 313.9t., = 196.20¢= 680Nishihara data reported in McDiarmid [27)
L[ 138.1 0 167.1 0 0 2.3 -5.6 1.0 2.8 22
2|[ 1404 0 169.9 0 30 4.7 8.1 3.6 -1.2 "l
3| 1457 0 176.3 0 60 49| -85 8.4 1.5 0.5
4 1502 0 181.7 0 90 37| 74 1.8 3.7 0.3
5[ 2453 0 122.65 0 0 1.5 4.5 4.0 2.6 34
6| 249.7 0 | 124385 0 30 3.9 | -10.0 5.2 2.5 23
7| 2524 0 ; 1262 0 60 -120 | -18.1 | 27 7.4 49 |
8 [[ 2580 0 129.0 0 90 1781 281 .14 | 153 | <148 |
9 [ 299.1 0 62.8 g - {0 0.9 | -64 | 1.7 | 6.3 | 1.4 |
10| 3045 | 0 63.9 0 | 90 3.0 | <104 | -1.4 | -103 | -2.4 |
Material: 42CrMod4 £ | = 398t = 260o0y= 1025Lempp data reported in Zenner [26]
11| 3280 0 1570 | 0 | 0 42 54 | 6.8 -4.6 | 7.2 |
12 || 286.0 0 137.0 0 | 9% 28.1 ' 365 -21.6 353 | 25.7 |
13 || 233.0 0 224.0 0 | 0 73] 05| 10.7 | 2.7 | 13.6 |
14 || 213.0 0 205.0 0 | % -14.6 | -21.2 3.8 -11.0 | -11.0 |
15 || 266.0 0 | 1280 | 128 0 -15.0 | -23.1 -2.5 -18.1 | -13.1 |
16| 2830 | o0 ' 1360 | 136 90 -28.9 | -372 6.4 | -29.4 | -19.0
17 3330 | 0 160.0 160 180 5.9 -3.8 20.9 1.6 12.1
18 || 280.0 280 134.0 0 0 29| 49 19.1 7.0 1.7
19 271.0 | 271 | 1300 0 90 240 | -164 | 9.7 ] -32.1 -22.4
"Material: 34Crd f | = 410t = 25607= 795Zenner et al. [26] data
20 || 3140 0 157.0 0 0 06| -63 2.0 | 3.4 | 13.1
21 || 3150 0 158.0 0 60 -158 | -21.6 -1.8 9.8 -9.0
22 || 316.0 0 158.0 0 90 229 | -2838 -7.6 -18.4 -20.1
'23 || 315.0 0 158.0 0 120 -15.8 | -21.6 -1.8 9.8 9.5
24 || 2240 0 224.0 0 90 8.4 | -12.5 9.3 1.6 5.4
25 || 3800 0 95.0 0 90 73| -143 -5.1 -12.4 -6.6
26 || 316.0 0 158.0 158 0 0.1 -5.7 13.5 4.2 2.0
27 || 314.0 0 157.0 157 60 -162 | -219 0.5 9.1 -11.8
28 || 315.0 0 158.0 158 90 232 | -289 1.6 -12.5 -7.0
29 || 279.0 279 140.0 0 0 -6.4 15.8 13.9 1.0 3.0
30 || 284.0 284 142.0 0 90 -25.5 2.9 10.7 -8.8 -17.7
31 || 355.0 0 89.0 178 0 6.2 | -12.7 10.3 -1.3 -5.6
32 || 2120 212 212.0 0 90 9.4 7.5 24.0 9.5 -12.3
33 || 129.0 0 258.0 0 90 3.2 0.8 133 8.9 9.0
Material: 30NCDI16 f.; = 660t.; = 410c¢= 1880Froustey and Lasserre (28] data
34 || 485.0 0 280.0 0 0 1.8 -3.4 4.7 3.2 -39
35 || 480.0 0 277.0 0 90 273 | -32.4 4.1 -19.7 -23.5
36 || 480.0 300 271.0 0 0 39| 104 19.2 2.8 8.8
37 || 480.0 300 271.0 0 45 78| -13 17.8 -1.5 0.5
38 || 470.0 300 270.0 0 60 -146 | -8.0 13.7 -7.1 -8.0
39 || 473.0 300 273.0 0 90 25.1 | -18.6 12.3 -12.9 -20.2
40 [| 590.0 300 148.0 0 0 0.1 5.4 11.0 -5.8 8.4
41 || 365.0 300 141.0 0 45 8.7 -3.2 4.0 -12.7 0.1
42 || 540.0 300 135.0 0 90 -15.0 -9.1 -7.4 22.1 -12.7
43 || 2110 300 365.0 0 0 0.7 8.7 16.3 3.3 6.8
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This figure is made up from five different graphs each one corresponding to a different
criterion. These graphs show frequency histograms that have been built as follows. The
abscissa is the value of the error index I. The values of [ ranging from -40% to +40%
have been separated in 16 classes (intervals) of equal range (i.e. 5%). Above each
interval a column has been drawn with a height equal to the number of experiments




REVIEW OF FATIGUE LIMIT CRITERIA

with a value of I falling in this interval. To make things clear let as examine the first of
graphs of (Figure /3). This graph corresponds to the Crossland criterion. Let us exam-
ine the experiments for which the error between prediction and experimental value
belongs to the class from 0% to 5%. From column 6 of Table , corresponding to Cross-
land criterion, we can find that, out of a total of 43 experiments, there are 9 experi-
ments for which the error index I has a value falling between 0% and 5%. Therefore,
the column drawn above the interval 0%-5% has a height equal to nine. Obviously,
predictions of a criterion can be considered as satisfactory, if the errors between pre-
diction and experimental value are concentrated in the classes around 0%. Clearly this
is not the case of the Crossland criterion. Indeed, the error index I attains values rang-
ing from -30% to +15% for this criterion. Moreover, there are not more than nine
experiments belonging to a single class of [ values, which means that the predictions of
this criterion are highly dispersed. Situation is not much better for Sines criterion.
From (Figure 13) one can observe that the I index ranges from -40% to +20%. Predic-
tions of this criterion also display a high dispersion. We will not insist in describing
separately each one of the graphs of Matake, McDiarmid and Dietmann criteria. The
corresponding histograms of (Figure 13) are self-explanatory. The comparative study
carried out in this work clarified that none, among the criteria examined, showed good
agreement with out-of-phase bending and torsion experimental results. The need of
formulating a new fatigue limit criterion is then clear.
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